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M O T I O N  O F  A S P H E R I C A L  H E A T  S O U R C E  I N  A 

M E L T I N G  M E D I U M  

L. Ya. Kosachevskii UDC 532.5.01.536.24 

The gravity-induced steady motion of a heat source boring through a solid medium is investigated. It is shown 

that the temperature of its surface is substantially nonuniform. Expressions are obtained for the maximum 

values of the radius and velocity of the source at which this temperature attains the assigned maximum 

allowable value. 

One of the currently contemplated means for complete removal of radioactive wastes is "self-burial," when, 

due to the heat generated by their activity, the wastes bore through the rock in a high-melting container and become 

imbedded in it under gravity [1 ]. In this case a quasistationary temperature distribution is attained, and the heat 

source moves with a constant velocity [2-4] .  The motion of a spherical source is considered in [3] on the 

assumption that the temperature of its surface is uniform. In the present work it is shown that the motion leads to 

a substantial nonuniformity of this temperature, whose maximum increases with increase in the radius. 

We consider the heat source as a homogeneous sphere with the volume-averaged density and equivalent 

thermal conductivity: 

pi = P2 + 1 - ~  ( P l - P 2 ) ,  kS= k--~ + -R k2 kl �9 

We assume that the sphere is motionless and the solid medium has a constant velocity U. The temperature and 

thermal diffusivity of the solid phase and the melt surrounding the sphere are assumed to be identical. 

The hydrodynamic equations for the thin layer of melt on the lower surface of the sphere 0 ___ 0 < Jr/2 

(see Fig. 1) in the approximation of lubrication theory have the form 

02Vo 1 dp Ov r 1 o 
- -  - s i n  0 + - -  - -  

Or 2 tlR dO' Or R O0 
(v 0 sin 0) = 0.  (2) 

Taking account of the boundary conditions 

v O(R, 0 ) = 0 ,  v r (R,  0 ) = 0 ,  v o(R+cS,  O)=UsinO (3) 

and the continuity condition 

R+~ 

2 f vodr = UR sinO, 
R 

(4) 

we find the distribution of velocities 

[ (:*1' =u---Y. 1 +---3 1 -  sin0 = - U  vo X ~* ) 
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! 
Fig. 1. Physical model and geometry of the problem. 

and the stresses on the lower surface of the sphere 

(5) 

r 5" 5 y = ~ - l ,  = ~  

ov2 
a r r = - p ,  an0= 3-y-U--sin0 P = P 0  +6y-U- f sin_fld0 (6) 

Rc~ .2  ' R 0 3 *3 " 

When 6" << 1, we may neglect the shear stress at0 in comparison with the normal stress arr. On the upper 

surface of the sphere we assume that 

a r r = - P o ,  arO = 0 "  (7) 

The temperature distribution in the boundary layer on the lower surface is determined by the equation 

OT vo OT 02T K 
V r - -  + -- a "----~, a -- , (8) 

Or R O0 Or pcp  

and the boundary conditions 

T ( R ,  0 ) =  T w ( O ) ,  T ( R + ( ~ ,  0) = Tin ,  

_ k ._~rOT (R  + 3 , O) = h p U  cos O , h = h  m + cp ( T  m -  T ~ )  . 

(9) 

In [3 ] the temperature of the surface of the sphere T w was assumed to be constant and problem (8), (9) 

was solved by the parametric method of boundary layer theory. We will solve this problem by the iterative method. 
As a first approximation we take a linear distribution in r: 

T l ( r ,  r  w ( ~ ) -  [T w ( r  mlffz ,  r  

Substituting it into the left-hand side of Eq. (8) and integrating taking account of the first two conditions of Eqs. 
(9), we find the following approximation: 
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T (r ,  ~) = T i (r ,  ~) 
3 hS 

20 Cp 

Y ~y x 

• f [ ~ - ( 1 - ~ 2 )  ( $2 + 5 c~*' S 18 

t 

+ ~ + 7 ( 1 _ ~ z  ) s 5~ . ,  
3 S 42 

2 

+ 

- ~ + (1 - ~2)  (10) 

3 

and we limit ourselves to it. The prime denotes derivatives with respect to ~. The third condition in Eqs. (9) gives 
an equation for determining d: 

1 ( 1 - ~ 2 )  6 " -  1 8  ~8 1 I ( 7 1 _ _ , - 7 ' ( ~ ) ,  7 " ( ~ ) = -  ~ 1 + - - S  - 
S 2O 

-1(110 -- ~2) S'] ' Cp UR (11) 
S = - -  [T w(~) - Tin], f l -  

h a 

Except for the small portion with ~ < e, the thickness of the layer of melt varies fairly slowly. Therefore, 
we may neglect the first term in Eq. (11); then the thickness is determined by the formula 

1 (12) ~* = 3-~" 

Under the assumption that S = const << 1, it coincides with the result of [3 ]. On the portion with ~ < e it is possible to 
neglect ~2 and 7' in Eq. (11). In this case 

~, = [ ~ , / ( o ) _ ~ t ]  v2 (13) 

Using the conditions of continuity and smoothness of the function 3(~) at ~ = e and assuming that 
7"(e) = 7"(0), we find 

[ 1 3 - 2  , 
~* (0 )  - r (~) 7' (~) 

1 1 (14) 
- , :7" (~)  - 7' (0 )  1 ,  7' (~) = 

7" (0 )  2 

According to Eqs. (10)-(12), we have the following expression for the heat flux density: 

0 r  k_~{ i } 
-k-~r (n' ~)= cpR ~ -4  [ ( 1 - : 2 )  S1' . (15) 

We assume it to be valid for the entire lower surface 0 _ ~ _< 1. The heat flux through the upper surface is ignored. 
The temperature distribution in the interior of the source in the presence of axial symmetry satisfies the 

equation 

1137 



0 _ _ q r 2 ~r(r2Or_~r) +O_~[(  1 ~ 2 ) ~ ]  = ~/ . 

Its solution, bounded at the points r = 0 and ~ = _+ 1, has the form 

4q, [8 1 T/ ( r ,  ~) = Trn + - ~ /  
rt=O 

where Pn(~) are Legendre polynomials; r* = r /R.  In this case the local Stefan number is equal to 

qR2cp 
S = 4 v  ~ CnPn (~) , v -  ki h 

rt=0 

From the boundary condition 

074 (R ~) = 
ki-bT- r , 

k - f i  T ( R , ~), ~ > 0  

O, ~ < 0  

(16) 

(17) 

(18) 

(19) 

we obtain an infinite system of equations for determining the constants Cn: 

8 n + l  ~ 1 
S ( O ) = ~ v y - 2 ,  C n -  87 z., C m f  P m ( ~ ) [ P n + l ( ~ ) - P n - l ( ~ )  ] d ~ -  

n=O 0 

2 n +  1 E31 3) ] 8 ~  -~ f SPn (8) d~ + 2 - ~ Pn (O) , 
0 

k~ (20) n = l ,  2 . . . . .  7=~-f l .  

Limiting ourselves to three termsin the infinite sum, we obtain 

2y(y2 11 139) 3 Co = X + ~ 7  + ~ 2v' 

C1 = -  2 ~  7 +  , C 2 = -  3- ~ y -  , 

1•8 33 
A = y 2 + 7 + 2048----0' 

and the Stefan number takes the form 

S ( ~ ) = S ( 1 ) + 4 ~ A ( 1 - ~ )  4 7 y - - ~ + 1 5  y -  ~ , (21) 

where 

8v7( 2 5 9 )  
s (1) = -yff r - ~ 7 + ~ -  6 - 2 .  (22) 

With the aid of Eqs. (6), (7), and (12), we find the pressure force with which the melt acts on the sphere: 
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1 1 
2axR 2 f p~d~ = 6~ar]fl4J, J = f (1 - ~2) ~o3d~. 

-1 0 

Equating it to the difference between the weight and Archimedes forces, we obtain an equation for 
determining 7: 

2 g R 3 at/~4 = 9 ~ -  (Pi - P) �9 (23) 

When S(1) << 1, the integrand qb of the integral J has a sharp maximum at the point ~0 close to unity. Therefore 
the main contribution to the value of J is made by its neighborhood (~1, ~2). In this neighborhood 

1 
r = ~' (~o) + ~ ~" (~o) (~ - ~o) 2 , 

~1,2 = ~0 • -2 ~(~o) ] ~ ~(~o) , ~ o = 1 + 1  s ( 1 )  
2 S' (1) '  

,I, (~o) = - 
27S' (1) S 2 (1) 

~,' (seo) = 64 sS4(1) 
81 (1) 

Thus 

1 6 , / 3  
J =  

81S '2 (1) S (1) '  

and, according to Eqs. (21) and (23), 

S (1) = 0.923 
[]2 

ar//~6 f (7) 

g (Pi - P) Rv qCp 
(24) 

,.,=.(. 
Now, the value of 7 can be found from Eq. (22), which at small values of S(1) reduces to a cubic equation: 

7 - ~  + 7 - ~  4v 5 Y 8 1 9 2 0 v - 0 "  

This equation has a single positive root. As v increases, it decreases, and the velocity U increases. 
The Stefan number assumes this largest value at the upper critical point 

(2s) 

S ( -  1) = ~ -~ 7 +  (26) 

and increases with increase in v. Equating S ( -  1) to the value S,, which is the maximum allowable value for a given 
container and which corresponds to the melting temperature of its surface T., we find, taking int O account Eq. (25), 
the maximum value v.: 

24S .A  (7.)  
~,. _ (27) 

r .  (327, + 3) ' 
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y . = -  + - - +  -~ + - -  
2 32 S. 16S, 5120 

Thus, the maximum velocity and radius are determined by the expressions 

and with allowance for Eq. (1) we have 

_qR. 
U. ptrv,y, ' R. = - -  qCp * 

(28) 

b k 1 (29) 
R . =  + - 1 - - qcp "-4 -~2 "2 k2 1 . 

To determine the boundary of the melting zone behind the sphere, we make the following assumptions. 

We consider a sphere of radius R1, R < R1 < R + 3(0) (shown by dashes in Fig. 1). In the region R _ r < R1, 

--- 0 the temperature is assumed to be equal to Tw(~), and with r >_. R1, ~ > 0, except for a negligibly small 

neighborhood of ~ -- 0, it may be assumed to be coincident with T~. Ignoring the disturbance of the velocity of the 

medium introduced by the sphere in the region r _> R1, ~ < 0, and the reverse release of the heat of the phase 
transition, we have an equation for the external temperature distribution: 

Or r O~ r Or -~- (1 - ~2) 7 " 

Its solution, decreasing with increase in r and bounded at the point ~ = -1 ,  has the form 

where gn+ 1/2(x) are cylindrical functions of imaginary argument. From the boundary condition 

Te(R1, ~)=v(~)----{ Tw([ ) ' T ~  ~<0,~>0 

(31) 

(32) 

we find the constants Bn: 

1 ( )  
Bn = (2n + 1) ~ f exp ~2 ~ [~ (~) - Too ] 

_1 
Pn (~) d~. 

By limiting ourselves to the leading term of the asymptotic expression 

n+~(x) = Tx exp ( -  x) ,  

we simplify Eq. (31) to 

T e (r ,  ~) = T~, + --r [T (~) - T~ ] exp - (1 + ~) ~-1 - 1 . (33) 

Equating Te to the melting temperature of the medium Tm and neglecting T~, we obtain an equation for 

the interface between the liquid and solid phases at ~ _< 0: 
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The solution of this equation exists for a small exponent. Expanding it into a series and confining ourselves to the 

linear term, we find 

R I {  2or (~) } - 1  (35) 
6" (~) = -/~- 1 + 2 + / 3  [1 + a ( ~ ) ] ( 1  + ~  ) . 

The value of R 1 c a n  be found from the condition that this expression should coincide with Eq. (14) at ~ -- 0. 

As an example, we consider the case of imbedding of wastes in granite in a carbide-niobium container for 

the following data [3, 5]: q = 130 000 W/m 3, Pl = 7800 kg/m 3, kl = 36 W/(m.deg),  P2 = 7800 kg/m 3, k2 = 14 

W/(m.deg),  T. = 3480~ b = 0.01 m; p = 2700 kg/m 3, cp -- 1301 J/(kg.deg),  k = 3 W/(m'deg) ,  Tm = 1200~ 

hm = 585 800 J/kg, ~/= 10 kg/(m.sec).  

According to Eqs. (14)-(35), we have S. = 1.382, 7. = 0.937, v. -- 1.156, R, -- 0.719 m, U, = 1.488.10 -5 

m/sec = 469.34 m/year,  fl = 12.527, S(1) = 1.5.10 -5, S(0) = 0.889, 6'(1) = 1.2.10 -6, 6*(0) = 0.490, 6"( -1)  = 

2.995, R1/R = 1.378, e = 0.109. 

The boundary of the melting zone is shown in Fig. 1 by a solid line. At the lower critical point the sphere 

is located virtually in direct contact with the solid medium and has a temperature equal to its melting temperature. 

N O T A T I O N  

p, k, Cp, and a, density, thermal conductivity, specific heat, and thermal diffusivity of the medium; P l , 2  

and kl, z, densities and thermal conductivities of the wastes and the container material; ~/, dynamic viscosity of the 

melt; hm, latent heat of melting; Tm and T., melting temperatures of the medium and he container material; q, R, 

and U, specific power, radius, and velocity of the heat source; Tw, surface temperature of the source; S, Stefan 

number; 6, thickness of the melt layer; p, pressure; Vr and vo, radial and azimuthal velocity components of the 
melt. 
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